Udaya Public School, Ayodhya
 First Term Examination (2023-24)
 Class X Subject: Mathematics SET IV

Time : 3 Hours
MM:80
Instructions:

1. This question paper contains 5 sections namely A, B, C, D and E.
2. Sections A has 20 MCQ questions 1 mark each.
3. Sections B has 5 questions 2 marks each.
4. Sections C has 6 questions 3 marks each.
5. Sections D has 4 questions 5 marks each.
6. Sections E has 3 case study-based questions 4 marks each.

Section A (20x1=20 Marks)

Q1: A quadratic polynomial $p(x)=(x-2)^{2}$ as no. of zeroes at most:
(a) 0
(b) 1
(c) 2
(d) None

Q2: The total number factors of a prime number is:
(a) 1
(b) 0
(c) 2
(d) 3

Q3: The LCM of two prime numbers number p and $q(p>q)$ is 221 . Find the value of $3 p-q$.
(a) 4
(b) 28
(c) 38
(d) 48

Q4: If a and b are two co-prime numbers then a^{3} and b^{3} are:
(a) co-prime
(b) not co-prime
(c) even
(d) odd

Q5: The value of x and y in the below figure are:

(a) $x=10 \quad y=14$
(b) $x=21 \quad y=84$
(c) $x=21 \quad y=25$
(d) none of these

Q6: If α and β are the zeros of a polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-4 \sqrt{3} \mathrm{x}+3$, then find the value of $\alpha+\beta-\alpha \beta$
(a) $4 \sqrt{ } 3$
(b) -3
(c) $4 \sqrt{ } 3-3$
(d) $-4 \sqrt{ } 3-3$

Q7: If α and β are the zeros of a polynomial $5 x^{2}-7 x+2$, then sum of their reciprocal:
(a) $7 / 2$
(b) $7 / 5$
(c) $2 / 5$
(d) None of these

Q8: If α, β are the zeros of a quadratic polynomial $\mathrm{p}(\mathrm{x})=\mathrm{x}^{2}-(\mathrm{k}+6) \mathrm{x}+2(2 \mathrm{k}-1)$, then the value of k . If $\alpha+\beta=1 / 2 \alpha \beta$.
(a) 2
(b) 3
(c) 4
(d) None of these

Q9: Which of these is polynomial whose zeroes $1 / 3$ and (-3/4)?
(a) $12 x^{2}+5 x-3$
(b) $12 x^{2}-5 x-3$
(c) $12 x^{2}-13 x$
(d) $12 x^{2}-13 x-3$

Q10: If a pair of linear equations is consistent, then the lines will be:
(a) Parallel
(b) Always coincident
(c) Intersecting or coincident
(d) Always intersecting

Q11: The values of k for which the system of linear equation $x+2 y=3,5 x+k y=0$ has unique solution , then find the value of $(x+y)$:
(a) $-14 / 3$
(b) $2 / 3$
(c) 5
(d) 10

Q12: The value(s) of k for which the quadratic equation $2 x^{2}+k x+2=0$ has equal roots is:
(a) 4
(b) ± 4
(c) -4
(d) 0

Q13: For what value of $k, k x^{2}+8 x+2=0$ has distinct roots:
(a) $\mathrm{K}<8$
(b) $k>8$
$(k=2$
(d) None of these

Q14: If $a x+b y=a^{2}-b^{2}$ and $b x+a y=0$, then the value of $(x+y)$ is:
(a) $a^{2}-b^{2}$
(b) $b-a$
(c) $a-b$
(d) $a^{2}+b^{2}$

Q15: Which of following equations has 2 as a roots?
(a) $x^{2}-4 x+5=0$
(b) $x^{2}+3 x-12=0$
(c) $2 x^{2}-7 x+6=0$
(d) $3 x^{2}-6 x-2=0$

Q16: If the system of equation $3 x+y=1$ and $(2 k-1) x+(k-1) y=2 k+1$ is consistent, then value of k is:
(a) -1
(b) 0
(c) 1
(d) 2

Q17: If $\operatorname{HCF}(n, 32)=4$ and $\operatorname{LCM}(n, 32)=96$, then $n=$?
(a) 3
(b) 4
(c) 8
(d) 12

Q18: If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$, then value of a is:
(a) 0
(b) 1
(c) 2
(d) -1

Q19: The HCF of the smallest composite number and the smallest prime number is:
(a) 4
(b) 2
(c) 3
(d) 1

Q20: If the sum of the zeroes of the quadratic polynomial $3 x^{2}-k x+6$ is 3 , then the value of k is:
(a) 6 ,
(b) 7
(8)
(d) 9

Section -B (5x2=10 marks)

Q21: If $\frac{x}{2}+\frac{2 y}{3}=-1, x-\frac{y}{3}=3$ then find the value of x and y .
Q22: Given that $\operatorname{HCF}(306,657)=9$, find $\operatorname{LCM}(306,657)$.
Q23: Find a quadratic polynomial ,the sum and product of whose zeroes are $-3 / 4$ and $2 / 3$ respectively.
Q24: Find the roots of the quadratic equation $3 x^{2}-2 \sqrt{6} x+2=0$
Q25: Show that $5-\sqrt{3}$ is an irrational. Given that $\sqrt{3}$ is irrational.

Section-C (6x3=18 Marks)

Q26: Half the perimeter of rectangular garden, whose length is 4 cm . more than its width is 36 cm . Find the dimension of the garden.
Q27: Solve $2 x+3 y=11$ and $2 x-4 y=-24$ and hence find the value of m for which $y=m x+5$.
Q28: The sum of the two digit number is 9 . Also 9 times this number is twice the number obtained by reversing the order of the digits. Find the number.
Q29: The product of two consecutive positive integers is 306 . We need to find the integers.
Q30: The altitude of a right triangle is 7 cm . less than its base. If the hypotenuse is 13 cm . Find the other two sides.
Q31: Find the zeroes of the quadratic polynomial $x^{2}+7 x+10$ and verify that relationship between the zeroes and the coefficients.

Section -D (4x5=20 marks)

Q32: Prove that $\sqrt{7}$ is an irrational.
Q33: Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x - axis, and shade the triangular region. Also find its area.
Q34: DC motor boat whose speed $18 \mathrm{~km} / \mathrm{hrs}$. in still water takes 1 hour more to go 24 km upstream. then to return downstream to the same spot. Find the speed of the stream.
Q35: If the zeroes of the polynomials $x^{2}+p x+q$ are double in value to the zeroes of $2 x^{2}-5 x-3$, find the value of p and q.
Section-E(3x4=12 marks)
Q36: A mathematics exhibition is being conducted in your school and one of your friends is making a modal of a factor tree. He has some difficulty and asks for your help in completing a quiz for the audience. Observe the following factor tree and answer the questions:

A. Find the value of x
B. Find the prime factorization of 13915.

Q37: Amit is planning to buy a house and the layout is given below figure. The design and measurement has made such that areas of two bedrooms and kitchen together is $95 \mathrm{sq} . \mathrm{m}$.

A. Form the linear equations for above situation.
B. Solve these pair of linear equations to find lengths of bedroom and kitchen.

Q38: Raj and Ajay are very close friends. Both the families decide to go to Ranikhet by their own cars. Raj's car travels at a speed of x km/hrs. while Ajay's car travels $5 \mathrm{~km} / \mathrm{hrs}$. faster than Raj's car. Raj took 4 hrs. more than Ajay to complete the journey of 400 km .
A. What will be the distance covered by Ajay's car in two hours.
B. The quadratic equation in terms of speed of Raj's car.

